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ON SOME NUMERICAL DIFFICULTIES IN INTEGRATING
THE EQUATIONS FOR ONE-DIMENSIONAL
NONEQUILIBRIUM NOZZLE FLOW

By Harvard Lomax, Harry E. Bailey,
and Franklyn B. Fuller

Ames Research Center
SUMMARY

Several numerical difficulties arise in the problem of integrating the
ordinary differential equations that represent the flow of a gas in chemical
nonequilibrium through a nozzle. These difficulties are identified with par-
asitic eigenvalues, saddle-point behavior, and indeterminate forms. The
numerical difficulties and the methods that successfully overcame them for the
particular examples analyzed are discussed in this report.

INTRODUCTION

The equations representing one-dimensional steady flow of a gas in chem-
lcal equilibrium through a nozzle (channel flow) are well known (see, e.g.,
ref. 1). These equations are treated again here for the purpose of studying
certain difficulties, specifically, saddle-point behavior, that arise when
they are integrated numerically through the transonic region. The technique
developed from the simpler problem is then applied to clarify some of the dif-
ficulties encountered in integrating the much more complicated equations that
represent the flow through a nozzle of a gas in noneguilibrium. The physical
model of air used in these computations is the same as that used in refer-
ence 2. This model has been greatly improved in the ensuing years in a vari-
ety of ways by a variety of authors. However, this report is an analysis of
numerical difficulties that can arise in integrating the equations formed
from the cholce of any model, and, for this purpose, the one chosen appears
reasonably representative.

In reference 2, a critical analysis of several numerical methods for
computing the flow of a gas in chemical nonequilibrium has been carried out.
Certain information contained in that reference, such as the concept of para-
sitic eigenvalues and the construction and value of implicit methods, is help-
ful for a detailed understanding of the material presented here. However, in
reference 2, the examples are limited to the nonequilibrium flow behind a
normal shock wave. Additional complications arise in the transonic section of
a nozzle; two of the most ilmportant are those arising from the existence of a
saddle point and the problem of numerical solution of the differential equa-
tions when the gas they represent is nearly in equilibrium.



The question of integrating through the saddle point has generally been
avoided by considering the gas to be in equilibrium from a position upstream
of the minimum section to one a little downstream from it. In fact, most
often a pressure distribution along the channel is assumed in this region;
the corresponding cross-sectional area follows from a direct calculation, and
a few iterations produce the desired approximate nozzle shape in the transonic
part. This procedure is not always usable, however, and, in this report,
direct methods are developed for treating saddle points. For example, if the
flow is out of equilibrium upstream of the throat, the abovementioned device
is unsatisfactory. An example of such a case 1s included here. Also, in
other problems, such as blunt-body flow, the method of integral relations
often leads to saddle-point behavior, and it becomes necessary to use
techniques such as those to be presented.

SYMBOLS
[ ] matrix of enclosed quantity
[ ]—l inverse of matrix
A cross-sectional area of nozzle
K& derivative of A with respect to Ix
[An] matrix in locally linearized equations (see eq. (10))
a equilibrium speed of sound
ax critical speed of sound
<?ij>n element in A, wmatrix
Cp 571ty
Cpy specific heat at constant pressure for ith species
ers truncation error
F derivative of w with respect to s (see eq. (6))
h step size
hs enthalpy of dith species
[T] unit matrix
n step number



pressure

production of species 1 1in moles per unit volume per unit time

universal gas constant
independent variable

scale factor (see egs. (3))
temperature

velocity

dependent variable in coupled equations (see eq. (6))

distance along nozzle

Zv.

;L

ratio of specific heats for a perfect gas
molar concentration of ith species, moles/gm

density

eigenvalue of matrix [A,]

Superscripts
vector
transpose of vector

differentiation with respect to s
BASTC EQUATTIONS

Equilibrium Flow

When an inviscid channel flow is in chemical equilibrium, the basic
equations can be expressed in terms of the three dependent vsriables

and p by the matrix equation

E E 0| [u]  [euE,
0 -a® 1 Py 0

u,

P,

(1)



where x 1is the independent variable representing length along the channel, A
is the channel cross-sectional area at a given x, and the subscript indicates
differentiation with respect to x. It is well known that the solution of
equation (1) can be found directly, and the dependent variables u, p, and p
can be expressed as functions of & and reference conditions (see, e.g.,

ref. 1). As was pointed out in the Introduction, however, we are interested
here in the numerical solution of equation (1) in order to study the tech-
niques required to treat more complicated problems with fundamentally similar
numerical difficulties that cannot be resolved analytically.

Equation (1) can be solved directly for the derivative terms. One finds

"

x A(a® - u®)

-
I
X E(a® - u®)

ouZa

J

which give, by inspection, the well-known condition that if the velocity
becomes sonic, the derivatives of the dependent variables all have zero denom-
inators; if they are to remain continuous, the numerators wust also vanish.

In this case, the numerators can vanish only 1f Ay = O, which leads to the
well-known fact that the sonic velocity occurs at the throat. Of principal
interest for our purposes is the fact that this indeterminate form leads to
the study of critical points (in particular, saddle points) and the numerical
difficulties .that occur near then.

An analysis of saddle points from a numerical standpoint is presented in
the next part. Now we note only that the indeterminacy in equations (2) can
be eliminated by a simple transformation; the general procedure is outlined
in reference 2. Introducing the new independent variable s, defined by

x' = %g = soh(a? - ud)

where s, 1s a constant scale factor, mekes x a dependent variable in the
new set of four coupled nonlinear differential equations

u' = %g = -soua®A, (3a)
p' = soputhy (3b)
p' = sopuaagzk (3c)
x! = soﬂ(a2 - u?) (34)




Notice that equations (3) are determinate for all finite values of s and
autonomous (i.e., s does not appear explicitly on the right-hand sides of the
equations).

Nonequilibrium Flow

The basic equations used herein for nonequilibrium channel flow are
identical to those presented as equations (1) in reference 2. With a slight
change in the notation (z* for 74, C; for 27.cp,), the equations can be
written B it EL

= du ~ dp s
A gt = Py
S d
_d;u_ k" dp * _GE 71 —
PU T3 + Rz"T ax + pRz I + dﬂ?}: = 0
1
N
du % dT dyg
u ax + Cp e + E: hy = = 0
1 - (4)
ay 1
pu -d}_{l. = Q (p:T:7l: . 4' ° 7N)
dy
N N
Qua}'c'_ = Q (Q:T;7l: LR 7N)

-
If equations (4) are solved for the derivatives du/dx, dp/dx, and dT/dx,
each expression has in its denominator the term

* K * *

TRz" Cp, - u2(cP - Rz™)
which is the counterpart of the term a® - u® +that appeared in equations (2).
It can be eliminated by a transformation similar to equation (3d). There
results



d - * Wom
u' = a‘si = sopuRA[-z*'.Dl + cprg:l - RZ*TpuchAx
o' = sop°RA [z*Dl - C§TD2:I + P ¢} - Rz*> Ay
1 = (12 - Rz© _ 12 * ry
T sopA| (v Rz T)D, oRTD, | + Rz Tpu-Ax (5)
x! = sopuKEERZ*C; - u?(?; - sz)]
7; = sopKQi[TRZ*C;-u?<§§ - RZ*:H 5 i=1, .. ., N J
where
N
i
1
N
- 1
D, = E:Q
1

and where s, 1is again a scale constant. The dependent variable T has
replaced p, used in the equilibrium case, and the N species concentrations
are now coupled into the equations. Notice, however, that the equations are
determinate and autonomous.

Some of the numerical difficulties that occur in integrating equa-
tions (5) can be illustrated by a study of the much simpler equations (3).
Hence, the first part of the report will be devoted to the numerical analysis
of equilibrium flow.

Local Linearization

The locally linearized forms of equations (3) and (5) will next be con-
structed, following the procedure of reference 2. In either case, equilibrium
or nonequilibrium, the equations of motion can be represented in vector
notation as

-1 _g._;i_—’»
= & - F(®) (6)
where, for equations (3),
Wl o= (u,0,0,%) (7)



and for equations (5)

Wl = (u,p,T,')'l, L) 7N’X) (8)

Note that equations (6) are quasi-linear, that is, the highest derivative
appears linearly. The ligearization is now performed by expansion of each
component of the vector F, denoted F;, in a mulbtidimensional Taylor series
about the point s, = nh. This gives, after substituting equation (6),

-1 Fi Fi wo-w
Wj_ = Fil’l + (wl - Wln) Si>n + . . .+ (Wm - m)@ﬁ)ﬂ+0[|w - Wn|2:| (9)

for the ith component W:i_ of w'. The number of components of W is taken
to be m; hence, there are n coupled equations such as (9) in the set. Note
that when W = W(s + nh) = Wy,

-

7 el = s - )T = 1T+ o(n®)

by Taylor expansion. By defining the Jacobian matrix

[A] = (a;4) = @%D

the set of equations (6) can be written

¥ o= F, o+ [8,1(F - W) + 0(1D)
= [A,0% + By + Oo(b) (10)
where
- -
f, = ¥y - [ApTwy, (11)

It is important that although equation (10) represents the local linear-
ization of equation (6) (referenced to Sp = nh), it is the derivative Wl
that is represented as linear in the stepsize h. Therefore, in a differenc-
ing scheme, the linearization here is consistent with any method that approx-
imates the function itself with a second-degree polynomial. For example, if
the difference scheme is

1 t
Vorr = W + 5 b0y, + W) + 0(b%)



then inserting expression (10) for the derivative terms does not alter the

order of the error.

The [A] matrix is not difficult to construct analytically in the case of

equilibrium flow represented by equation (3).

just as instructive) to assume a calorically perfect gas; then

Tt is especially simple (and

_ 7P .. da” _ &%
p’ P’ op P
and
— e 1 o 1 o o -
-Soa“Ax So ° ua”A, -89 > ua“Ay ~SoUa“Ayy
280pUhAy s ouzAx 0 s OpuZA__XX
[A] = (12)
2sopuagﬂk 0 8o %-pugazﬁi soouZaZh
-25uh sy = a2k 5o = a2k s (a® - W¥d)A
| "o o5 ° o XJ

If the nonequilibrium equations (L) are to be integrated by means of
impliecit formulas, the A matrix will be 13 X 13 for the gas model used in
reference 2 and in the present report. However, just as in reference 2, the
elements of A are not determined analytically. They are computed by the
approximate formula

3F; A‘Fi(l.Ole) - F1(0.99v;)

o (13)
Bwj 0.02w,

NUMERTICAL INTEGRATION THROUGH A SADDLE POINT

Introductory Example

The analytical behavior of autonomous systems of first-order ordinary
differential equations has been thoroughly studied in the mathematical litera-
ture. The facet of this material of particular interest in the present inves-
tigation is well summarized in reference 3, page 70, ff. As mentioned
previously, this part of the theory is the study of behavior of solutions near
a critical point, specifically, a critical point of the type known as a saddle

8




point. Because of the advantage of geometrical visualization of the points
involved, the case involving only two independent variables will be considered
first.

Let there be two differential equations

dx
at = P(X,W)
(14)
dw
E‘b_ = Q(X)W)
which can be put in the form
dx
== = ayX + a;ow + Ty (x,w)
db (1ka)
dw _ + fo(x,w)
T = 221Xt agaV S(x,w
Further, suppose that aj;8-5 - 8s18s5 # O, and that
1 0 > (14D)
lim @ @————e—= i=1
X, w>0 NxZ + w2 ’ ’

The point x = w = O is then said to be a simple singularity of the system.
It is shown in the theory (see, e.g., ref. 3) that under such circumstances,
the singularity of system (1Lk) at x = w = O has essentially the same nature
as that of the linearized system

ax _
'dT = aq.1Xx + &9 oW
(15)
dw _
EE = 8oy X + 8o oW

The constants a are components of the Jacobian matrix used above, that is,

_ [oP
811 T \5%

Hence the condition on the constants ajy can be stated in terms of the non-
vanishing of the Jacobian O(P,Q)/d(x,w) at the origin.

13

_ (99
., a =57
X=W=0

2
X=w=0

Note that in this case the differential equations (15) can be combined to
give

§£ - allx + a12W
dw 851X + 85oW



The point x = w = O is then seen to be one at which the derivative 1s indeter-
minate. While this simple means serves to fix the saddle point when there are
two variables involved, such as x and w above, 1t is not clear at once how

1t can be extended to more complicated cases, such as that represented by the
system of equations (5). A more suitable test for more than two variables is
given below.

As an example, congider the autonomous linear system of differential
equations:

%g = 2w - x + 0.5
(16)
%§ = -W + 1.0
or
%g . 2w -lx_+wo,5 (162)

From the latter form it is seen that the critical point is at w= 1, x = 2.5.
Tt is helpful to put equations (16) into the vector-matrix notation used
above in the section on Local Linearization. Thus, put

T . _ 2.0 -1.07 ST
W= (,x); [A] = [1.0 o :l, - = (0.5,1.0)

and equations (16) can be written
o= [alv+ ¥ (16b)

This equation is formally equivalent to the linearized form, that is, that
obtained by neglecting terms O(h®) in equation (10).

The eigenvalues of the matrix in equation (16b) are

o, =1 -2~ -0.41Y -
17

0, = 1+ J2 ~ 2.4k

They are real and of opposite sign. This fact is important since it character-
izes, for the two-dimensional case, the critical point as a saddle point. In
cases where more variables are present, the presence of eigenvalues of differ-
ent sign, in company with a reguirement that solutions remain finite, can be
taken as indications of saddle-type behavior. The behavior of the integral
curves of equation (16a) (or (16b)) is easily found. Independent solutions
for w and x are combinations of the complementary solutions e 15 and ecz
with the particular integral w = 1.0, x = 2.5. If wg and Xy are the values
of w and x, respectively, at s = O, then the general solution of equa-

tion (16b) is

10



w - 1.0 = 5——5-[(xo - 2.5) - gy (w, - 1)1e72° W
; ;l—@ [(%5 - 2.5) - ga(we - 1)1e°2®
(18)
c
x - 2.5 = 2\?5 [(x0 - 2.5) - o1(wo - l)]ecls
_ 01 Oo8 J

[(%0 - 2.5) - oa(wy - 1)]e

Since o031 and oo are real and of opposite sign, with op > 0, it is
clear that one or the other of the exponential terms must have a zero coeffi-
cient if a solution is to remain finite as s —» xw. Thus, a finite solution
as s - 40 results if x5 - 2.5 = cz(wo - 1) while a finite solution as
s > <o results if x5 - 2.5 = cl(wb - 1). 1In these two cases, the integral
curves are contained in the lines (separatrices)

wo-1=-2 (x-2.5) (192)
G2
woo 1= 2 (x - 2.5) (19b)
01
ser Arrowheads show directions oy wjid((:t/c%')v(i -2.5)

for increostng s

respectively. These lines are
@ Wt am2.51/0 00T identified in sketch (a).
If the initial conditions (xg,
Wo) lie on line (2) in the sketch,
then as s 1increases the solution
will follow this line toward the
point (2.5, 1.0). Integration in
the opposite direction (s decreas-
L \ \ \ \ \ \ \ \ ing) would give an integral curve
° ' ' x.am : : *  moving away from the saddle point.
Similar remarks, with sign reversal
Sketch (a).- Saddle curve behavior for on s, hold for the line (l) in the
equations (16). sketch.
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If the initial conditions do not satisfy one of equations (19), no
matter how small the error, the corresponding integral curve will contain an
exponentially increasing component that will prevent the curve from ever
approaching the saddle point. Instead, the curve will have a hyperbola-like
shape and will ultimately approach x®. This fact is at the root of numeriecal
difficulties in the solution of differential equations having saddle-point
singularities; since computing machines do not reproduce numbers exactly,
there will always be an error in the initial conditions.

We shall now discuss the numerical determination of the integral curves
of equation (16b). The particular method chosen is the second-order Runge-
Kutta:

ut)

I

u, + huy
(20)

I

1./,
Upt1 u, + §'h un+l + Uy
This method will also be used later in integrating the flow equations dis-~
cussed in the previous sections. Preclse meanings of terms and symbols used

in equations (20) and the numerical analysis that follows can be found in
references 4 and 5.

Accuracy

The accuracy of the integral curves found by applying the integration
method (20) to the differential equations (16) will be discussed first. The
truncation error, ers, for the second-order Runge-Kutta method is given by
(see ref. 5, p. 63)

eI'7\ = % (0'].’1)3

Here, ¢ = o, = 2.41 is the largest eigenvalue. Hence, a stepsize
h =as = 0.05 gives a local truncation error of about

_ -4
er) = 3x10

Thus, we should expect a total accumulated ("global") error of less than

3 percent after 100 steps. This expectation is borne out by comparison of
the calculated solution with the exact one. The results (which correspond to
curves AA' and AA'! in sketch (a)) are listed below (note that the initial
conditions were chosen to lie above and below the separatrix by approximately
equal amounts) .

12



TABLE T

c Tnitial 1 Numerical results Exact results
wve pitias values after 100 steps for same s
WO XO : W X w X
AAT -0.035531 0 1.2411 2.0232 1.2516 2.0189
AATY -0.035537 0 . 4686 2.3413 L4595 2.3470

The point to be made here is that the numerical method (20) is suffi-
ciently accurate, that is, increasing the accuracy of numerical integration
would not lead to discernibly different results to the scale of sketch (a).

Instabilities
Induced instability.- The real stability boundary of the Runge-Kutta

method given by equation (20) is -2.0 (ref. 5, p. 83). That is, in the
present case, h is limited to the range

lon| < 2

where ¢ 1is the largest negative eigenvalue of the matrix [A] in equa-

tion (16b). This value is o, = -0.41k, so that h can be as large as 4.8
without bringing on the induced instability. If the direction of integration
were reversed, the largest negative eigenvalue would become -0, = -2.41, and
there would be no induced instability for h < 0.83. Hence, for the present
problem, there is absolutely no danger of induced instability with the
stepsize h = 0.05 used.

Inherent instability.- From the above discussion, 1t is seen that there
is actually no numerical difficulty, either in regard to accuracy or to
induced instability, in calculating the integral curves marked AA' and AA'!
in sketch (a), the initial values for which are given in table I. Thus, if
such a result is indeed the correct answer for the problem set, there is no
more to be said. However, i1t is usually the case that when a saddle point
occurs in a problem the desired result for the integral curve is the separa-
trix or saddle curve. As we have seen from the example above (sketch (a)),
reaching the saddle point by forward integration from a given initial posi-
tion is difficult indeed. For the case examined above, the initial condi-
tions for a point on the saddle line starting at x = O are

O=O; Wo=%(7‘5\l—é)

Since the computer is unable to represent exactly the number ~f§; it is

058 (1W2)s

lmpossible to exclude completely terms in e = e from the solution

(s 1increasing).
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This is an example of an inherent instability (ref. 4, p. 48). That is,
it is not possible to exclude from the numerical solution the terms in equa-
tions (18) that contain the growing exponential, e 2 = e2°%145, Again, this
occurs because an irrational number cannot be represented exactly on a binary
digital computer.

In summary

1. There is no numerical difficulty per se, either with regard to
accuracy or stability, in numerically evaluating integral curves in the
"vicinity" of a saddle curve. (The precise definition of vicinity is gov-
erned by the word length of the particular computer used for the computation.)

2. The saddle curve itself is inherently unstable and its numerical
calculation involves all the difficulties associated with such an instability.

Numerical Integration Through Saddle Points

General dicussion.- Actually, the numerical integration of saddle curves
may or may not lead to difficulty. Recall that, by definition, a saddle
point can occur only if there are two real eigenvalues of opposite sign in
the [A] matrix of the coupled equations. No matter in what direction the
integration proceeds, therefore, there is always a positive eigenvalue in the
presence of a negative one; and, again by definition, an inherent instability
exists if that particular solution is desired for which all effects of the
positive eigenvalue disappear from the exact analysis. We now show that the
numerical difficulties depend upon the ratio of these two eigenvalues and the
direction of integration when their magnitudes are unequal.

Consider equations (15). Transform, by an appropriate rotation and dis-
placement, to a new set of variables, y; and y5, that lie along the saddle
curves, with origin at the saddle point itself (as shown in sketch (b)).

This transformation uncouples equa-
. tions (15) and we find solutions in
e i the form
sketch (@) N
v1(8) = y,(0)e2"

M
J (21)
Curve (2) in A \ — =y yz(s) = yz(o)egzs

sketch (a)

The parameter s can be eliminated

g from these eguations, leading to the

solution
1/03 /o
Sketch (b) [yl(s) - yg(s) He (22)
¥, (0) ¥2(0) ’

Now if y, is started a distance -2.5 units from the origin (saddle point)
and y, a distance € above the y,; axis, we have

1h



0,/0
yl(s) = ‘2-5[2__ yz(s)] HE

If we proceed to integrate (accurately) to where Yo = 1, there results

O.171
Se

_2.5<%>(1—~ﬁ3/(1+45)=

Vi =

Even if € had been chosen as small as 107%, y; would still be -0.223 units
from the y, axis after the integration. This accounts for the divergence
from the separatrix of curves AA' and AA'' in sketch (a).

Next, notice that if conditions are reversed and one starts with
(yl =€, Yo = -2.5) and proceeds to0 integrate until y1 = 1, the results
would be

Vo = 50,5583

This leads to a behavior quite different from that encountered in integrating
from A to A'. To illustrate this,integration of equations (16) was started
at point B in sketch (a), and integrated (using eqs. (20) with As = -0.05)
for 140 steps. The results are given by the solid line BB' in the sketch,
and the initial and final values are presented in table IT.

TABLE IT
o Tnitial 1 Numerical results Exact results
urve pitial vaiues after 140 steps for same s
X W X W X
BB! 0 2.9 0.91060 2.28L17 0.91059 2.2841h

This difference in divergence of the numerical solution from the saddle
point can be utilized. Suppose that one has an initial value problem in
which the initial data are given on the saddle curve itself at a point such as
A in sketch (a); the problem is to integrate numerically across the saddle
point and proceed along the same saddle curve. ©Suppose, further, that pro-
ceeding forward (increasing s) from A, one found, by experiment, results
similar to those represented by curves AA' and AA''. It would appear, on the
basis of the discussion in the previous paragraph, that one could readily
solve the problem by iterating on results obtained by integrating backward
from suitable guesses near the critical point (but still in the same half-
plane as the initial point). This approach does not succeed in all cases;
there are two conditions under which it either is not helpful or fails
disastrously:

1. The eigenvalues o, and o, are equal in magnitude so that the inte-
gral curves are right hyperbolas and neither direction of approach to the
saddle point is preferred.

15



2. Coupled into the equations are other eigenvalues that are relatively
large negative numbers with respect to forward integration. These becoue
large positive numbers when the direction of integration is reversed and lead
to serious inherent instability.

It will be found that both the above conditions operate in the problem of non-
equilibrium channel flow when passing through the throat section. Neverthe-
less, the saddle points that arise in the solution of the blunt-body problem
by means of the method of integral relations do indeed approach their asymp-
totes at different rates. Thus the device mentioned above may be put to good
use.

Some practical considerations.- If each of the quantities w and x in
equations (16) is considered as a function of s (see egs. (18)), then, for
forward integration, the saddle point becomes the point at s = 4w. The deriv-
atives w! and x' approach zero as s - ©, as shown for w(s) in sketch (c).

Care should be taken that too much
'5[ calculation time is not wasted in
, indiscriminate attempts to integrate
s Saddle asymplote too close to the saddle point in
terms of s.

s —_— —_—

T An extrapolation across the

w . saddle point to obtain initial
values from which the solution can be
: started again on the opposite side is
A | ( y | y ) | often satisfactory. The extrapola-

Y t T T i t 1 i —
tion should be based on two integral
L . \ \ \ \ , . | curves that are initially very close
: z 3 : ® ® ’ 8 and later diverge in opposite direc-
tions, such as curves AA' and AA™ in
Sketch (¢).- Saddle curve behavior in terms of sketeh (a) . To offset the inaccuracy
independent variable s. . . .
inherent in such an extrapolation,

notice that integral curves have the property that the direction of motion
along the curve with increasing s reverses as the saddle point is crossed.
Hence, by extrapolating past the saddle point, and reversing the sign of the
increment As, an integral curve that approaches the saddle curve, rather than
one diverging from it, will be obtained. This convergence will not occur if
the saddle point is not passed in the extrapolation. For example, starting at
point C in sketch (a) and integrating 134 steps with stepsize As = h = -0.05,
the curve CC' was obtained. The end results are given in table ITIT.

TABLE IIT
Curve Tnitial values Numerical results Exact results
after 134 steps at same s
W X w X w X
ce! 1.2 2.6 2.0156 h.9518 2.0158  L.9523

A point on the saddle line itself occurs at w = 4.9528, x = 2.0160, so that,
even with the "bad start" at C, the integration approaches (for this example)
the desired saddle curve with good accuracy.
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NUMERICAL CALCUIATION OF EQUILIBRIUM FLOW

The equations for inviscid channel flow of a gas in chemical equilibrium
have been given above (eqs. (1)). These equations were then put in autonomous
form (egs. (3)), and they will be treated in that form in the numerical work
described below. In the following discussion of the numerical solution of
equations (3), the eigenvalue structure at the throat is first considered.
Then the integration process used to approach and pass through the saddle
voint at the throat of the channel is presented.

Conditions at the Throat

Although all solutions for equilibrium channel flows presented in this
report are for a real gas in chemical equilibrium (carried out by means of
the real-gas program described in ref. 6), it is instructive to inspect ana-
lytically the nature of the solution at the throat when perfect gas approxima-
tions are valid. This is because the eigenvalues (as determined numerically)
at the throat, for the equilibrium real-gas flow, show a similarity with
those determined analytically for a perfect gas.

Thus, consider the locally linearized equations for perfect-gas, channel
flow right at the throat section where Ax = 0 and u = a = a¥. The A
matrix given by equation (12) simplifies to

o 0 0 B W
0 0] 0 sopa*egkx
[A] = (23)
0 0 0 sopa*%x
— 1 o 1 o
- * - = g% = g%
L_QSoa A 8o 5 & A 8o 5 a*<A 0 ]

Note that the only differences between this result and the corresponding one
for a real gas appear in the elements a,, and as3, where the terms (Saz/ép)p

and (Baz/ap)p have been simplified in the present case of a perfect gas.

The eigenvalues of the matrix in equation (23) are given by the roots of

the equation
62[02 - SO?KEXXa*4<§-a*2 + i)J =0

7
After some reduction, using the relation a¥*2 = a2 = 7?-, the eigenvalues
are found to be
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o4 . 1/ 2
il:(y + 1)AAma*4s02]

Oz (2k)
65 =0, =0
The scaling factor sg, still at our disposal, is taken to be
1
So = T (25)
as2

where agy 1s the sound speed at u = 0, that 1s, under reservoir conditions.
This is convenient because then

dx 2 2 _
X _&g -~ v roRh
ds a.2

o

when u << a. In all cases considered in this report, the area wvariation is

taken to be _
A=1+x° (26)

With the above choices for sg and.K; the nonzero eigenvalues become

C1 o /2
= i[(y + 1)2 3—;]
05 ©
1/2
=,_L<7 f 1> A~ $1.83 (27)

when 7 = 1.4. The eigenvalues at the throat in a perfect-gas flow therefore
are real and of opposite sign. Hence, there is a saddle point at the throat,
and the situation is one in which backward integration near (but not across)
the saddle point becomes useless, as pointed out previously. The same situa-
tion is found when we deal with a real gas, where the eigenvalues are
numerically determined.

Calculations Upstream and Downstream of the Throat
The channel flow equations in autonomous form, equations (3), were inte-
grated numerically by means of the second-order Runge-Kutta procedure dis-

cussed above (egs. (20)). The first case considered is one in which the
approximate reservoir conditions are
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Sketch (d).- Integral curves near the saddle
curve for a real gas flowing in equilibrium
through a nozzle; reservoir conditions,
equations (28a).
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Sketch (f).- Integral curves near the saddle
curve for a real gas flowing in equilibrium
through a nozzle; reservoir conditions,
equations (28a).
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Sketch (e).- Integral curves near the saddle
curve for a real gas flowing in equilibrium
through a nozzle; reservoir conditions,
equations (28a).

T, = 10,000° K} (282)
Po = U470 atm
Integration was begun at x = -1.0 cm,

where the throat, for the channel
shape given by equation (26), occurs
at x = 0. Results for four guessed
values of the initial velocity are
shown in sketch (d). The saddle-
point behavior near x = O shows
clearly. Also, sketches (e) and (f)
show the calculations of density o
and temperature T corresponding to
the initial guessed values of veloc-
ity. Many such curves can be calcu-
lated in a few seconds, and the
computations can easily be automated.
Thus, in the final program, such solu-
tions are calculated until the saddle
point is sufficiently well located,
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an extrapolation is made across the saddle point, and the integration con-
tinued as far as required downstream, all in a single run. The final down-
stream variation of the physical quantities u, p, p, and T 1is shown in
sketch (g). These results will be used later in comparisons to be made with
calculations of nonequilibrium flow.

In support of the claim made above that the eigenvalues of the equilib-
rium real-gas flow calculations are analogous to those for a perfect-gas
flow, sketch (h) shows the eigenvalues actually calculated (for reservoir con-
ditions (28a)) as functions of distance x along the channel. It is seen
that, indeed, when x = 0, two of the eigenvalues vanish and the remaining ‘
two are equal in magnitude and of opposite sign. (The magnitude of the eigen- ‘
values is 2.0 rather than 1.83.) In this skebtch, only the real part of the
complex eigenvalues is shown (all complex eigenvalues appear as conjugate
complex pairs since the elements of the matrix [A] are real). The maximum
magnitude of any eigenvalue is less than 6 in this case, so a step size S
h =As = 0.02 is well within the stability boundary (|oh| < 2) for the inte-
gration method used. At no stage of the calculations were any of the eigen-
values pure imaginary, for which the
Runge-Kutta second-order method is

. e

pownstream unstable (see ref. 5, p. 83). Hence
10,000° K the explicit equations (20) were
Eqﬁﬁ;ﬁ:M1 adequate for solution throughout the

entire range.

T ~

5— =4
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e,
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. .
. Equilibrium
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o )

| Po=4470 aim
Real port of eigenvaiue
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s L I i | ' | ! i |
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X, ¢m
Sketeh (g).- Channel flow solution for a real gas Sketeh (h).- Local eigenvalues in the equations

in equilibrium downstream from the throat of a representing the channel flow of a real gas

nozzle; reservoir conditions, Ty = 10,000° K,
P, = 4470 atmospheres.

in equilibrium flowing through a nozzle;
reservoir conditions, T, = 10,000° X,
P, = W70 atmospheres.
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The eigenvalue patterns for two other solutions, corresponding to
assumed equilibrium channel flow with reservoir conditions

[e] .
T, = 8,000° K (26b)
Dy = 100 atm
and
T, = 10,000° K
(28c)
by = 0.2 atm

are shown in sketches (i) and (j). The scaling (factor sy in egs. (3)) was
chosen so that the right side of equation (3d) was 1 at the beginning of the
integration. It is interesting to note that in spite of the large difference
in reservoir pressures (0.2 to 4470 atm), the eigenvalue curves are much
alike in shape and magnitude in the three cases. The nonequilibrium real-gas
flow for the same three sets of reservoir conditions is examined in the next

section.
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Sketch (J)-- Local eigenvalues in the equations
representing the channel flow of a real gas
in equilibrium flowing through a nozzle;
reservoir conditions, T, = 10,000° K,

Py = 0.2 atmospheres.

Sketch (1).- Local eigenvalues in the equations
representing the channel flow of a real gas
in equilibrium flowing through a nozzle;
reservoir conditions, T, = 8000° K,

P, = 100 atmospheres.
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NUMERICAL, CALCULATION OF NONEQUILIBRIUM FLOW

Introduction

A variety of problems can arise when one seeks to make numerical calcula-
tions of a gas flowing out of chemical equilibrium. ©Some of these are dis-
cussed in the following. The problem of providing a suitable mathematical
model is not considered here; we use the same model as that described in ref-
erence 2, which, in turn, was taken from references 7 and 8. There is no
essential difficulty in casting the equations in finite-difference form. In
fact, there is little numerical difficulty in constructing the [Ap] matrix
(see eq. (13)) if it is required. The real difficulties are more fundamental.
For example, the saddle-point problem still occurs in the throat region, and,
if treated in the way outlined above, requires an extrapolation of all nine
species across the critical point (which is no longer exactly at the minimum
section). In addition, the problem of parasitic eigenvalues (numerically
large negative eigenvalues which, for numerical stability, force an unnatu-
rally small step size, see ref. 2) can now arise. Furthermore, these para-
sitic eigenvalues appear near the beginning of the calculations (i.e., in the
throat section) rather than downstream as 1s the case in the study of
nonequilibrium flow behind shocks.

The above difficulties can be compounded in some calculations when the
gas 1s very nearly in equilibrium, because, in such a case, the QY in equa-
tions (4) and (5) are composed of terms formed by the product of very small
and very large terms (indeterminate forms in the mathematical model when the
equilibrium limit is approached). Surprisingly, this near indeterminacy
appeared to cause no trouble in any of the calculations carried out. This
matter is reserved for discussion in the last section after the results have

been presented.

Parasitic Eigenvalues

It is well known that the equations representing a gas flowing in chemi-
cal equilibrium have local parasitic eigenvalues. That is, some of the eigen-
values of the [An] matrix (found by putting egs. (5) in the form of eq. (10))
are very large negative numbers compared to others that determine the solu-
tion.t In flows from nozzles with high reservoir pressures, these parasitic
eigenvalues appear upstream of the throat.

Some of the eigenvalues for flow from the reservoir conditions given in
equation (28&) are shown® in figure 1. Actually, several large negative
eigenvalues are contained in the local [A,] matrix. The three largest ones
are shown in the figure. Now it should be mentioned that, for these reservoir
conditions, the gas in the nozzle between the reservoir and a section aboutb

eigenvalues.
ZNotice the numerical evidence of singular behavior at the critical

point.
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3 cm downstream from the throat is very nearly in equilibrium. This can be
shown by comparing solutions for a nonequilibrium case with those for an equi-
librium one (fig. 2). In this region of near equilibrium, the eigenvalues
that are actually driving the solution are those already shown in sketch (h),
two of which are also included in figure 1 for comparison. This extreme dif-
ference (about 1x107) between the largest negative eigenvalues and the driving
eigenvalues forces one, practically speaking, to an implicit numerical
integration method.

As in reference 2, equations (5) were converted to equations (10) by cal-
culating the elements (aij)n numerically, that is, by using equation (13).

The modified Euler implicit differencing scheme
W =y lll 1 ! (30)
n+l n + 3hWpe + Wy 3

was used, leading to the formula

<[1] - %h[An]\) (G = o) = BF, + 0(x°) (31)

Calculaticns were started at x = -1 cm, and all integrations were carried
out with s as the independent variable. Although the product of the step
size and the largest negative eigenvalue started as high as -8000, the results
were satisfactory, as 1llustrated in figure 2, where the nonequilibrium cal-
culations are compared with the previously discussed equilibrium ones. The
equilibrium species concentrations shown in figure 2(b) are readily calcu-
lated for the given reservoir composition from the assumption of chemical
equilibrium and knowledge of two thermodynamic variables, say, density op

and temperature T as shown in figure 2(a).

The saddle-point problem was treated exactly as in the equilibrium case
by finding two integral curves that diverged to opposite sides of the criti-
cal point. The results for p, u, and T are shown in sketches (k), (1), and
(m) . Extrapolation across the saddle point was carried out for the veloecity,
density, and temperature. The individual species were also extrapolated, but
the downstream calculations appeared to be sensitive to small changes
("errors") in the species concentrations; hence, for the results shown, only
the velocity, density, and temperature were extrapolated, and the species
concentrations were chosen to be those in exact equilibrium with the
extrapolated temperature and density.

Sketches (k) and (g) also show the result of "bad" extrapolation; that
is, the circled points are the results of calculations made with deliberate
errors in the extrapolations for p, u, and T (these correspond to the
example of the curve marked CC' in sketch (a)). In this case, the conver-
gence of the integral curves to the saddle curve is evident. No cases to the
contrary were found, although no "extreme" errors were tried.
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Sketch (k).- Integral curves near the saddle
curve for a real gas in nonequilibrium flow
through a nozzle; reservoir conditions,

T, = 10,000° K, p, = 4470"atmospheres.
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Sketeh (m).- Integral curves near the saddle
curve for a real gas in nonequilibrium flow
through a nozzle; reservoir conditions,

To = 10,000° K, p, = U470 atmospheres.
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Sketeh (2).- Integral curves near the saddle
curve for a real gas in nonequilibrium flow
through a nozzle; reservoir conditions,

T, = 10,000° K, p, = 4470 atmospheres.

The eigenvalues for the two
lower pressure reservoirs, given in
equations (28b) and (28c), as well as
the solutions for the nonegquilibrium
Tlow through the nozzle region under
these conditions, are shown in fig-
ures 3 through 6. The parasitic
eigenvalues tend to disappear as the
reservoir pressure drops, and, in
fact, in the lowest pressure case
they have, for practical purposes,
vanished. The latter case, therefore,
can be integrated all the way from
x = -1 using the explicit method
defined in equation (20).

Notice that for the conditions
given in equation 28(c) (low reser-
voir pressure) the nozzle is out of
equilibrium well upstream of the



minimum section. TIn this case, all of the species, as well as the velocity
and thermodynamic variables, had to be extrapolated across the saddle point.
For these conditions, however, this procedure appears to give quite satisfac-
tory values as the results shown in figure 6 indicate by their smoothness.

Calculations Made Near Eguilibrium

As mentioned in the introduction to this section, some special problems
arise when the flow is nearly in equilibrium, due to a numerical indeterminacy
in the species production Ql (see egs. (4)). This indeterminacy arises in the
the product of X3, the "degree of nonequilibrium," (ref. T7) Xi - O as equi-
librium is approached. For example, a typical Xji, for the reaction N, < 2N,
is given by 1 - o2

- X2 (32)
7sK2

where Ky 1is the equilibrium constant

for the reaction specified.

. Lttt A1l computations were made in

T s ]  8-place (27-bit) floating-point arith-
\ SRR . metic, and in the numerical calcula-
&% .2, tions under near equilibrium
- “.. | conditions the subtractions needed to
’ form the X; (e.g., eq. (32)) lost

some of the significant figures.
Although a quantitative analysis of
the processes involved has not been
\ carried out, the numerical evidence
-] indicated that the loss was not disas-
N trous. Tt is thought that this is due
to the fact that the product of step
23“"T§”‘”"T2‘*""iﬂ”" - ! size and driving eigenvalues was suf-
Tohem : ficiently small that valid information
was obtained from whatever significant
figures remained. At any rate, suffi-
cient information was retained to
provide the accuracy indicated in
figure 2 for the high-pressure reser-~
) voir conditions (28a) and the flow
T model implicit in equations (5).

Sketeh (n).- The fluctuation of du/ds 1in
calculations made very near equilibrium;
upstream from nozzle.

1 1 1 i T T T

. In near equilibrium calculations,

2 e most of the derivatives fluctuated

. . within a band on successive steps.

sk B For example, typical results for
du/ds on the upstream and downstream
side of the throat are shown in

» sketches (n) and (o). This kind of
behavior for the derivative terms is
typical of the unconditionally stable

of
w
>
ES
>
&
s

Sketch (0).- The fluctustion of dufds 1in
calculations made very near equilibrium;
downstream from nozzle.
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implicit methods when they are being used in the presence of large negative
eigenvalues. The following is offered as an explanation:

1. The solution to the difference equations (in linearized form, at
least) depends upon the sum of a number of terms represented (for the implicit

modified Euler method) by
n
hO‘k
Cx
1 -

ST AT

hO'k

where n 1is step number, g 1is an eigenvalue in [An], and Cp 1s a constant
that depends on the initial conditions.

2. If hop 1is negative, the magnitude of the term In brackets is always
less than 1, but if hoyr 1is a large negative number, the magnitude of the
term within brackets is not much less than 1, and, furthermore, it is always
negative.

3. In effect, then, the solution of the difference equation is composed
of two kinds of terms. For example,

driving terms
LN

r N
w= 0g(0.021 . . )% +c (-0.035 . . )"+
parasitic terms
r — N
n n
+ C(0.999 - . )7+ Cria(=0.999 . . )T+ )
. The terms (-0.999 . . .)rl oscillate between +1 and -1 as n is
even or odd and if the coefficients Cxk, Ck41, - - - are not exactly zero

(they cannot be exactly zero in truncated floating-point arithmetic). This
will appear as "noise” at some level of significance in the numerical

golution.

5. Apparently, for the mathematical model chosen and for the arithmetic
used to study it, this noise is Jjust below the level of usable information in
the values of the dependent variables at near equilibrium conditions.

When calculations were made even slightly away from equilibrium, the
fluctuations (to the scale shown) disappeared and the numerical calculations
appeared "normal." For example, the transition from fluctuating to relatively
smooth values of the derivative du/ds is seen in sketch (o) to occur about
1 cm after passing the minimum section in the high pressure case. To the
scale used in figure 1, the gas is not yet out of equilibrium until sbout 3 cm
downstream from the throat.
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CONCLUDING REMARKS

For problems that require the numerical integration of differential
equations through a saddle-point type of singularity, it is necessary (1) to
identify the location of the saddle point and then (2) to use special numeri-
cal techniques to obtain the solution of the differential equations in the
saddle-point vicinity. If the eigenvalues of the system having different
sign are also of different magnitude, the technique of backward integration,
that 1s, integration from the saddle-point vicinity outward, may be useful.

Large parasitic eigenvalues may be present in the numerical integration
of the differential equations governing the flow of a gas out of chemical
equilibrium. In the model chosen, this was particularly true near the throat
of the nozzle, and the severity of the parasitic behavior increased with
increasing density. Use of an implicit numerical method is recommended for
the most severe cases.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Jan, 6, 1969
129-01-02-05-00-21
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